Resource Competition Shapes the Response of Genetic Circuits.
نویسندگان
چکیده
A common approach to design genetic circuits is to compose gene expression cassettes together. While appealing, this modular approach is challenged by the fact that expression of each gene depends on the availability of transcriptional/translational resources, which is in turn determined by the presence of other genes in the circuit. This raises the question of how competition for resources by different genes affects a circuit's behavior. Here, we create a library of genetic activation cascades in E. coli bacteria, where we explicitly tune the resource demand by each gene. We develop a general Hill-function-based model that incorporates resource competition effects through resource demand coefficients. These coefficients lead to nonregulatory interactions among genes that reshape the circuit's behavior. For the activation cascade, such interactions result in surprising biphasic or monotonically decreasing responses. Finally, we use resource demand coefficients to guide the choice of ribosome binding site and DNA copy number to restore the cascade's intended monotonically increasing response. Our results demonstrate how unintended circuit's behavior arises from resource competition and provide a model-guided methodology to minimize the resulting effects.
منابع مشابه
Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملModeling and Solution Procedure for a Preemptive Multi-Objective Multi-Mode Project Scheduling Model in Resource Investment Problems
In this paper, a preemptive multi-objective multi-mode project scheduling model for resource investment problem is proposed. The first objective function is to minimize the completion time of project (makespan);the second objective function is to minimize the cost of using renewable resources. Non-renewable resources are also considered as parameters in this model. The preemption of activities ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS synthetic biology
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2017